skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bourdon, Matthew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Climate and environmental instability during the early Aptian culminated with the unfolding of the Oceanic Anoxic Event (OAE) 1a, which resulted in the deposition of black shales in deep marine settings and a typical negative spike followed by a positive excursion in δ13C values. In Vercors (southern France) the Urgonian platform developed prior to and coeval to the OAE1a, but the impact of this paleoenvironmental crisis on the ecology of benthic ecosystems is yet to be quantified. We gathered field and petrographic data to identify sequence boundaries and maximum flooding surfaces that are biostratigraphically dated and correlated between four localities within the study area. A composite δ13C curve is built where the C3 to C7 isotope segments from the literature are identified, pinpointing the onset of the OAE1a above the last episode of deposition of Urgonian facies rich in rudist bivalves. Furthermore, thin section point counting data are used to quantify the proportion of allochems in samples and to trace changes in the ecology of ecosystems. The principal component analysis of point counting data helps define ecological tiers: a diversified, photozoan association with rudists, green algae, and benthic foraminifera dominated ecosystems before the OAE1a and up to the C7 segment, while a less diversified heterozoan association with bryozoans and crinoids developed after the OAE1a. To explore the triggers for this change, the principal component analysis of elemental geochemical data highlights an increased nutrient and detrital input as major triggering mechanisms for ecological adjustments and changes in the biodiversity of ecosystems. In particular after the OAE1a, an increase in detrital and nutrient input leads to the replacement of photozoan by heterozoan assemblages more adapted to these stressful conditions. This research directly links paleoenvironmental deterioration to paleoecological changes and quantifies the amount of adaptation of ecosystems. 
    more » « less
  2. Climate and environmental instability during the Early Aptian culminate with the unfolding of the Oceanic Anoxic Event (OAE) 1a, which consists of the deposition of black shales in deep marine settings and a typical negative spike in δ13C values followed by a positive excursion. In the Vercors, southern France, the Urgonian platform developed coeval to the OAE1a, but the impact of this paleoenvironmental crisis on the ecology of benthic ecosystem is yet to be quantified. First, field and petrographic data allow to identify sequence boundaries and maximum flooding surfaces; these are biostratigraphically dated and correlated within the study area. Second, a composite δ13C curve permits to identify the C3 to C7 isotope segments from the literature, thus pinpointing the onset of the OAE1a above the Urgonian Limestone, in the Upper Orbitolina Beds. Third, thin section point counting data permit to quantify the proportion of allochems, thus illuminating the ecology of ecosystems. Principal component analysis helps define three ecological tiers: diversified, photozoan associations with rudists, green algae, and benthic foraminifera dominate ecosystems prior to the OAE1a and up to the C7 segment, while a less diversified heterozoan association with bryozoan and crinoid developed in the aftermaths of the OAE1a. Fourth, elemental geochemical data identify an increased nutrient and detrital input (C7 segment) as the major triggering mechanisms for ecological adjustments and changes in the biodiversity of ecosystems. Our research indicate that these changes are initiated in the aftermaths of the OAE1a but culminate after it. 
    more » « less